altReboot
  • Startup
  • Growth Hacking
  • Marketing
  • Automation
  • Blockchain Tech
  • Artificial Intelligence
  • Contact
    • Write For Us
No Result
View All Result
  • Startup
  • Growth Hacking
  • Marketing
  • Automation
  • Blockchain Tech
  • Artificial Intelligence
  • Contact
    • Write For Us
No Result
View All Result
altReboot
No Result
View All Result
Home Artificial Intelligence

Emotion AI researchers say overblown claims give their work a bad name

Guest Author by Guest Author
February 14, 2020
in Artificial Intelligence
Emotion AI researchers say overblown claims give their work a bad name
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter

This post originally appeared on MIT Technology Review

Perhaps you’ve heard of AI conducting interviews. Or maybe you’ve been interviewed by one yourself. Companies like HireVue claim their software can analyze video interviews to figure out a candidate’s “employability score.” The algorithms don’t just evaluate face and body posture for appearance; they also tell employers whether the interviewee is tenacious, or good at working on a team. These assessments could have a big effect on a candidate’s future. In the US and South Korea, where AI-assisted hiring has grown increasingly popular, career consultants now train new grads and job seekers on how to interview with an algorithm. This technology is also being deployed on kids in classrooms and has been used in studies to detect deception in courtroom videos.

But many of these promises are unsupported by scientific consensus. There are no strong, peer-reviewed studies proving that analyzing body posture or facial expressions can help pick the best workers or students (in part because companies are secretive about their methods). As a result, the hype around emotion recognition, which is projected to be a $25 billion market by 2023, has created a backlash from tech ethicists and activists who fear that the technology could raise the same kinds of discrimination problems as predictive sentencing or housing algorithms for landlords deciding whom to rent to.

Related articles

Public policies in the age of digital disruption

The Biden administration’s AI plans: what we might expect

January 22, 2021
Public policies in the age of digital disruption

AI could make healthcare fairer—by helping us believe what patients tell us

January 22, 2021

The hype worries the researchers too. Many agree that their work—which uses various methods (like analyzing micro-expressions or voice) to discern and interpret human expressions—is being co-opted and used in commercial applications that have a shaky basis in science. They say that a lack of government regulation isn’t just bad for consumers. It’s bad for them, too.

Sign up for The Algorithm — artificial intelligence, demystified

The good and the bad

Emotion recognition, also known as affective computing, is still a nascent technology. As AI researchers have tested the boundaries of what we can and can’t quantify about human behavior, the underlying science of emotions has continued to develop. There are still multiple theories, for example, about whether emotions can be distinguished discretely or fall on a continuum. Meanwhile, the same expressions can mean different things in different cultures. In July, a meta-study concluded that it isn’t possible to judge emotion by just looking at a person’s face. The study was widely covered (including in this publication), often with headlines suggesting that “emotion recognition can’t be trusted.”

Emotion recognition researchers are already aware of this limitation. The ones we spoke to were careful about making claims of what their work can and cannot do. Many emphasized that emotion recognition cannot actually assess an individual’s internal emotions and experience. It can only estimate how that individual’s emotions might be perceived by others, or suggest broad, population-based trends (such as one film eliciting, on average, a more positive reaction than another). “No serious researcher would claim that you can analyze action units in the face and then you actually know what people are thinking,” says Elisabeth André, an affective computing expert at the University of Augsburg.

Researchers also note that emotion recognition involves far more than just looking at someone’s face. It can also involve observing body posture, gait, and other characteristics, as well as using biometric sensors and audio to gather more holistic data.

Such distinctions are fine but important: they disqualify applications like HireVue, which claim to assess an individual’s inherent competence, but support others, such as technologies aiming to make machines into more intelligent collaborators and companions for humans. (HireVue did not respond to a request for comment.) A humanoid robot could smile when you smiled—a mirroring action humans often use to make interactions feel more natural. A wearable device could remind you to rest if it detected higher than baseline levels of cortisol, the body’s stress hormone. None of these applications require an algorithm to assess your private thoughts and feelings; they only require an estimation of an appropriate response to cortisol levels or body language. They also do not make high-stakes decisions about an individual’s life—unlike unproven hiring algorithms. “If we want computers and computing systems to help us, it would be positive if they had a sense of how we are feeling,” says Nuria Oliver, the chief data scientist at the nonprofit DataPop Alliance.

But much of this nuance gets lost when emotion recognition research is used to make lucrative commercial applications. The same stress-monitoring algorithms in a wearable could be used by a company trying to make sure you’re working hard enough. Even for companies like Affectiva, founded by researchers who speak about the importance of privacy and ethics, the boundaries are tough to define. It has sold its technology to HireVue. (Affectiva declined to comment on specific companies.)

A call for regulation

In December, the AI Now research institute called for a ban on emotion recognition technologies “in important decisions that impact people’s lives.” It’s one of the first calls to ban a technology that has received less regulatory attention than other forms of artificial intelligence, even though its use in job screening and classrooms could have serious effects.

In contrast, Congress just held its third hearing on facial recognition in less than a year, and it has become an issue in the 2020 election. Activists are working to boycott facial recognition technologies, and several representatives are acknowledging the need for regulation in both the private and public sectors. For affective computing, there haven’t been as many dedicated campaigns and working groups, and attempts at regulation have been limited. An Illinois law regulating AI analysis of job interview videos went into effect in January, and the Federal Trade Commission has been asked to investigate HireVue (though there’s no word on whether it intends to do so).

Though many researchers believe a ban is too broad, they agree that a regulatory vacuum is also harmful. “We have clearly defined processes to certify that certain products that we consume—be it food that we eat, be it medications that we take—they are safe for us to take them, and they actually do whatever they claim that they do,” says Oliver. “We don’t have the same processes for technology.” She thinks companies whose technologies can significantly affect people’s lives should have to prove that they meet a certain standard of safety.

Rosalind Picard, a professor at the MIT Media Lab who cofounded Affectiva and another affective computing startup, Empatica, echoes this sentiment. For an existing model of regulation, she points to the Employee Polygraph Protection Act limiting the use of lie detectors, which she says are essentially an affective computing technology. For example, the law prohibits most private employers from using polygraphs and doesn’t let employers ask about the results of lie detector tests.

She suggests that all use of such technologies should be opt-in and that companies should be required to disclose how their technologies were tested and what their limitations are. “What we have today is that [companies] can make these outrageous claims which are just false, because right now the buyer is not that well educated,” she says. “And we shouldn’t require the buyers to be well educated.” (Picard, who says she left Affectiva in 2013, doesn’t support the claims that HireVue is making.)

For her part, Meredith Whittaker, a research scientist at NYU and co-director of AI Now, emphasizes the difference between research and commercialization. “We are not impugning the entire field of affective computing,” she says. “We are particularly calling out the unregulated, unvalidated, scientifically unfounded deployment of commercial affect recognition technologies. Commercialization is hurting people right now, potentially, because it’s making claims that are determining people’s access to resources.”

A ban on using emotion recognition in applications such as job screening would help stop commercialization from outpacing science. Halt the deployment of the technologies first, she says, and then invest in research. If the research confirms that the technologies work as companies claim, then consider loosening the ban.

Other regulations would still be needed, however, to keep people safe: there’s ultimately more to consider, Whittaker argues, than just scientific credibility. “We need to ensure, when these systems are used in sensitive contexts, that they are contestable, that they are used fairly,” she says, “and that they are not leading to increased power asymmetries between the people who use them and the people on whom they’re used.”

ShareTweet

Related Posts

Public policies in the age of digital disruption

The Biden administration’s AI plans: what we might expect

by Karen Hao
January 22, 2021
0

On Wednesday, the US waited with baited breath as president Trump handed the government reins over to president Biden. The...

Public policies in the age of digital disruption

AI could make healthcare fairer—by helping us believe what patients tell us

by Karen Hao
January 22, 2021
0

In the last few years, research has shown that deep learning can match expert-level performance in medical imaging tasks like...

Transforming the energy industry with AI

Transforming the energy industry with AI

by Jason Sparapani
January 21, 2021
0

For oil and gas companies, digital transformation is a priority—not only as a way to modernize the enterprise, but also...

Public policies in the age of digital disruption

AIs that read sentences can also spot virus mutations

by Will Heaven
January 14, 2021
0

Galileo once observed that nature is written in math. Biology might be written in words. Natural language processing (NLP) algorithms...

These five AI developments will shape 2021 and beyond

These five AI developments will shape 2021 and beyond

by Jason Sparapani
January 14, 2021
0

The year 2020 was profoundly challenging for citizens, companies, and governments around the world. As covid-19 spread, requiring far-reaching health...

Load More
  • Trending
  • Comments
  • Latest
7 Advanced SEO Strategies I’m Trying to Implement Before 2020

7 Advanced SEO Strategies I’m Trying to Implement Before 2020

September 10, 2019
What Do Successful Sales Look Like for the Rest of 2020?

13 Expert Tips to Increase Online Conversions in 2020

September 26, 2020
Creating SEO-friendly how-to content

Creating SEO-friendly how-to content

October 24, 2019
8 Simple Steps to Use Your Book to Grow Your Business

8 Simple Steps to Use Your Book to Grow Your Business

September 10, 2019
A Beginner’s Guide to Facebook Insights

A Beginner’s Guide to Facebook Insights

0

Which Social Media Sites Really Matter and Why

0
The 12 Ironclad Rules for Issuing Press Releases

The 12 Ironclad Rules for Issuing Press Releases

0
How to Get Started Building Links for SEO

How to Get Started Building Links for SEO

0
Outranking Tough Competitors: My One-Year Study of a Google Local Finder

Outranking Tough Competitors: My One-Year Study of a Google Local Finder

January 25, 2021

How to Get a Free Domain Name

January 24, 2021
Finding the Good in Bad Times (AKA 2020)

Finding the Good in Bad Times (AKA 2020)

January 23, 2021

How to Start an Online Store

January 23, 2021
altReboot




altREBOOT is committed to sharing the game changing advancements that are revolutionizing how you do business. From startup to goliath, innovations in technology are changing the face of the business landscape. We are committed to exploring these and how to apply them to your business at any stage of development.





Categories

  • Artificial Intelligence
  • Blockchain Tech
  • Growth Hacking
  • Marketing
  • Startup
  • Uncategorized

Tags

blockchain branding guest post marketing mobile apps
  • Home
  • Topics
  • Write For Us
  • Privacy Policy
  • Contact

Powered By Treehouse 51

No Result
View All Result
  • Startup
  • Growth Hacking
  • Marketing
  • Automation
  • Blockchain Tech
  • Artificial Intelligence
  • Contact
    • Write For Us